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/ AN OF MATERIA

Torsional Loads on Circular Shafts (HI E& ot 3)

+ Torsion: a load as a form of twisting moment (eg. Transmission shafts to
transmit power from the automobile engine to the rear wheels)

» Example: A steam turbine A and an electric generator B connected by a
transmission shaft AB

 Turbine exerts torque T on the shaft B Shaft transmits the torque to the
generator » Generator creates an equal and opposite torque T’

Fig. 3.2 In the automotive power train shown, the shaft transmits power from the

engine to the rear wheels.

Net of the internal shearing stresses is an
internal torque, equal and opposite to the
applied torque,

« Although the net torque due to the shearing

is not.

« Distribution of shearing stresses is statically
indeterminate — must consider shaft
deformations.

» Unlike the normal stress due to axial loads,

stresses is known, the distribution of the stresses
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« Torque applied to shaft produces

« Conditions of equilibrium require the
existence of equal stresses on the faces of the
two planes containing the axis of the shaft.

 The existence of the axial shear components is
demonstrated by considering a shaft made up
of axial slats.

« The slats slide with respect to each other
when equal and opposite torques are applied
to the ends of the shaft.

From observation, the angle of twist of the
shaft is proportional to the applied torque and
to the shaft length.

When subjected to torsion, every cross-section
of a circular shaft remains plane and
undistorted.

Cross-sections for
remain because a
circular shaft is axisymmetric.

Cross-sections of
when
subjected to torsion.
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« Consider an interior section of the shaft. As a
torsional load is applied, an element on the
interior cylinder deforms into a rhombus.

+ Since the ends of the element remain planar,

« It follows that

« Shear strain is proportional to twist and radius

» Multiplying the previous equation by the
shear modulus,

From Hooke’s Law, , SO

(a)
The shearing stress varies linearly with the

radial position in the section.

* Recall that the sum of the moments from
the internal stress distribution is equal to
the torque on the shaft at the section,

* The results are known as the elastic torsion
®) formulas,
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| Stresses in Elastic Range

Fig. 3.15

diameters respectively equal to 40 and 60 mm (Fig. 3.15). (@) What I8
largest torque that can be
to exceed 120 MPa? (b) What is the correspor ding minimum value of

shearing stress in the shaft?

f Largest Permissible Torque. The largest torque T thal
| be applied to the shaft is the torque for which 7 120 MPa. &
this value is less than the yield strength for steel, we can use Eq

Solving

1 (N
Recalling that the polar moment of inertia | of the cross section is gVl
Eq. (3.11), where ¢ 10 mm) = 0.02m and ¢ (60 mm) = OF

¢ wrile
/ m(ct - ¢! 7(0.03' — 0.02° 1.021 X 107% m*
Substituting for | and 7, into (3.12), and letting « ¢ 003 48
‘u(\'
|7 1.021 X 107" m")(120 X 10" Pa)

tress occurs on the inner surface of the shaft. It is obtained

be applied to the shaft if the shearing stress I8

this equation for T, we have

kg

LOSKN «

Mir 3

The minimum value of the sl

vhich expresses that 7, and 7, are respectively propi
P 0.02m
T T 120 MPa 50 MPa
¢ 0.03m

max

fiin

i

B

TmaxA0

D - E R
TmaxA0 TrnaxA0
45° 45°

C B C

TociA

max 0

)

Elements with faces

Normal stresses, shearing stresses or a
combination of both may be found for other
orientations.

Consider an element at 45° to the shaft axis,

Element a is in pure shear.

Element c is subjected to a tensile stress on
two faces and compressive stress on the other
two.

Note that
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* Ductile materials
Brittle materials are

» When subjected to torsion, a ductile
specimen breaks along a plane of
maximum shear, i.e., a

» When subjected to torsion, a brittle
specimen breaks along planes
perpendicular to the direction in
which tension is a maximum, i.e.,

/ AN OF MATERIA

Sample Problem 3.1

SOLUTION:

+ Cut sections through shafts AB
and BC and perform static
equilibrium analyses to find
torque loadings.

 Apply elastic torsion formulas to
find minimum and maximum
stress on shaft BC.

Tp=6kN-m
Shaft BC is hollow with inner and outer
diameters of 90 mm and 120 mm, « Given allowable shearing stress
respectively. Shafts AB and CD are solid and applied torque, invert the
of diameter d. For the loading shown, elastic torsion formula to find the
determine (a) the minimum and maximum required diameter.
shearing stress in shaft BC, (b) the
required diameter d of shafts AB and CD
if the allowable shearing stress in these
shafts is 65 MPa.
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/ HAN OF MATERIA
Sample Problem 3.1
SOLUTION:
« Cut sections through shafts AB and BC
and perform static equilibrium analysis
to find torque loadings.
TA\ =6kN m T,=6kN.m

1 AN OF MA A

Sample Problem 3.1

+ Apply elastic torsion formulas to « Given allowable shearing stress and
find minimum and maximum applied torque, invert the elastic torsion
stress on shaft BC. formula to find the required diameter.

6kN-m

cp =45 mm

¢y = 60 mm

d=2c=77.8mm

Tmax =86.2MPa
Tmin = 64.7MPa
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Angle of Twist in Elastic Range

 Recall that the angle of twist and maximum
shearing strain are related,

« In the elastic range, the shearing strain and shear
are related by Hooke’s Law,

 Equating the expressions for shearing strain and
solving for the angle of twist,

« If the torsional loading or shaft cross-section
changes along the length, the angle of rotation is
found as the sum of segment rotations

/| HAN OF MA R|A

Angle of Twist in Elastic Range

What torque should be .lll]!li('(l to the end of the shaft of Example 3.01
to produce a twist of 2°7 Use the value G = 77 GPa for the modulus of

rigidity of steel

Solving Eq. (3.16) for T, we write

e
‘I‘ = (/,
L
Substituting the given values
d G =77 % 10°Pa L=15m
27 rad i
b=2 = 34.9 X 107" rad
360

and recalling from Example 3.01 that, for the given cross section,
[ =1.021 X 10°°m’

we have

G 021 X 107° m")(77 % 10" Pa)
P K Y (349 % 107 rad)
L 1.5m

T=189X%X10°N+m= 1.829kN - m
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Angle of Twist in Elastic Range

What angle of twist will create a shearing stress of 70 MPa on the inner
surface of the hollow steel shaft of Examples 3.01 and 3.02?

The method of attack for solving this problem that first comes to
mind is to use Eq. (3.10) to find the torque T cm‘re\pon(ling to the given
value of 7, and Eq. (3.16) to determine the angle of twist ¢ corresponding
to the value of T just found.

A more direct solution, however, may be used. From Hooke’s law,
we first compute the shearing strain on the inner surface of the shaft:

_Tws _TOX10Pa_ oo
Yon =G T 77X 10°Pa

Recalling Eq. (3.2), which was obtained by expressing the length of arc
AA’ in Fig. 3.13¢ in terms of both y and ¢, we have

Ly 1500 :
= o _ T 909 X 107%) = 68.2 X 107 rad

c 20 mm

¢

To obtain the angle of twist in degrees, we write

3 360°
¢ = (682 X 10 ’r;ul)( > = 3.91°

27 rad

\/ AN OF MATERIA

Angle of Twist in Elastic Range

mbly « r. 3.23, knowing that ry = 2ryg, dete

””‘m

f end shaft BE when the torque T is af
We first determine the torque Ty, exerted on shaft AD. Observing
that equal and site forces F and F' are applied on the two gears at
Fig. 3.24), and recalling that 2ry. we conclude that the torque
erted on shaft AD is twice as large as the torque exerted on shaft BF
“ F—TA—s C orpd
hus, 1 '
Since end D of shaft AD is fixed, the angle of rotation ¢, of gear \ E
A is equal to the angle of twist of the shaft and is obtained by writing $
. Tyl 271 =
P 16 & ig. 3.24

s that the arcs CC’ and CC* in Fig. 3.23b must be equal, we

ruhy and obtain

i1
JjG

call that the ang

through which end E rotates w

Tuel Il
&,
JC |G
The angle of rotation of end E is obtained by writing
by = by + &

4TI L 5T1
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900 mm

25 mm

B 600 mm

60 mm
22 mm |
f

Two solid steel shafts are connected
by gears. Knowing that for each shaft
G = 77 GPa and that the allowable
shearing stress is 55 MPa, determine
(a) the largest torque T, that may be
applied to the end of shaft AB, (b) the
corresponding angle through which
end A of shaft AB rotates.

/ AN QF MA

Sample Problem 3.4
SOLUTION:

« Apply a static equilibrium analysis on
the two shafts to find a relationship
between Tep and Ty .

+ Apply a kinematic analysis to relate
the angular rotations of the gears.

« Find the maximum allowable torque
on each shaft — choose the smallest.

« Find the corresponding angle of twist
for each shaft and the net angular
rotation of end A.

Sample Problem 3.4

SOLUTION:

 Apply a static equilibrium analysis on
the two shafts to find a relationship
between Tepand T, .

T‘"’/

(0]

F

rg = 22 mm

re = 60 mm

+ Apply a kinematic analysis to relate
the angular rotations of the gears.

re =60 mm

10
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/ AN OF MATERIA

Sample Problem 3.4

+ Find the T, for the maximum « Find the corresponding angle of twist for each
allowable torque on each shaft —  shaft and the net angular rotation of end A.
choose the smallest.

T =T,
c=95mm W

900 mm

/ AN OF MATERIA

Statically Indeterminate Shafts

« Given the shaft dimensions and the applied torque,
we would like to find the torque reactions at A and
B.

» From a free-body analysis of the shaft,

125 mm
\\‘\ 125 '%’\

T,+T, =120N-m

which is not sufficient to find the end torques.
The problem is statically indeterminate.

A\1, * Divide the shaft into two components which
120N - m must have compatible deformations,

a B
@ ¢ ¢_|. ¢2 TALl TBLZ =0 T _ Ll‘]ZT
3,G Lyd

[\%\ (\ « Substitute into the original equilibrium equation,
T G """ é ~ \ Tz

T, + 2927 120N-m
L,J

2Y1

(b)

11
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Statically Indeterminate Shafts

Wmnl.u shaft AB consists of a 250-mm-long, 22-mm-diameter ste

evlinder, in which a 125-mm-long, 16-mm-diameter cavity has be
drilled from end B. The shaft is attached to fixed supports at both enc
and a 120-N + m torque is applied at its midsection (Fig, 3.25). Determi

the torque exerted on the shaft by each of the supports

125 mm
B 125 mm

c X

- %
A
—

B

Fig. 3.25

Drawing the free-body diagram of the shaft and denoting by T, an
Ty the torques exerted by the supports (Fig. 3.26a), we obtain the equ
librium equation

Ty + Ty = 120N+ m

Since this equation is not sufficient to determine the two unknown torque

T, and Ty, the shaft is statically indeterminate
However, T, and Ty can be determined if we observe that the tota
angle of twist of shaft AB must be zero, since both of its ends are restraine
Denoting by ¢, and ¢, respectively, the angles of twist of portions AC
and CB, we write
d=d +d =0

Statically Indeterminate Shafts

From the free-body diagram of a small portion of shaft including end A
(Fig. 3.26b), we note that the internal torque T in AC is equal to Ty; fron
the free-body diagram of a small portion of shaft including end B

(
i Fig. 3.26¢), we note that the internal torque Tz in CB is equal to T
\ Recalling Eq. (3.16) and observing that portions AC and CB of the shaft
- . Ny are twisted in opposite senses, we W rite
- T\L Tyl
(a) B b=¢ +dp="22 L2
WG G
Solving for Ty, we have
LyJ2
’/ : 'I'\
\ LaJi
: o (™ Substituting the numerical data
B Ly = L, 125 mm
. Lr(0.011 m)* = 230 X 107" m*
Fig. 3.26 Ji=am e ; s -
I8 sar[(0.011 m) (0.008 m) 165.6 X 10 " m

we obtain
Ty = 072 T,
Substituting this expression into the original wpnhlninm equation, we write
1.72 T, 120 N = m
Ta 698 N +m Ty 502N +*m
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Design of Transmission Shafts

* Principal transmission shaft
performance specifications are:
- power
- speed

« Designer must select shaft
material and cross-section to
meet performance specifications
without exceeding allowable

« Determine torque applied to shaft at
specified power and speed,

« Find shaft cross-section which will not
exceed the maximum allowable
shearing stress,

shearing stress.

/ AN OF MATERIA

Design of Transmission Shafts

EXAMPLE 3.06

What size of shaft should be used for the rotor of a 3.7-kW motor operat-
ing at 3600 rpm if the shearing stress is not to exceed 60 MPa in the shaft?

We first express the power of the motor in N + m/s and its frequency
i“ (‘\('l(‘\ l“']' \4'('(”“' or ]“'Y'[/('\:

P =37kW=3700 N - m/s

1 Hz
£ = (3600 rpm)_ = 60Hz=60s"

60 rpm
2 The torque exerted on the shaft is given by Eq. (3.21):
- P 3700 N * m/s —
T = .= — =98I5N ' m
2mf 2w (60s7Y)

Substituting for T and 7, into Eq. (3.22), we write

/ T 9815N *m s oo 3
— = = 163.58 mm”
T

c 60 MPa
But J/c = jmc® for a solid shaft. We have, therefore,
sme” = 163.58 mm”
¢ = 4705 mm

d = 2c =941 mm

A 10-mm shaft should be used.

13
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Design of Transmission Shafts

mlmn consisting of a steel tube of 50-mm outer diameter is to transmit

100 kW of power while rotating at a frequency of 20 Hz. Determine the

tube thickness that should be used if the shearing stress is not to exceed

60 MPa
The torque exerted on the shaft is given by Eq. (3.2
r 100 > 10°W >
1 T95.8N +m
27 f 27 (20 Hz)
From Eq. (3.22) we conclude that the parameter J/c; must be at least
equal to
/ T 795.8 N« m :
13.26 X 107" m (3.23)
Tooa 60 X 10" N/m
But, from Eq. (3.10) we have
/ T ‘ . T -
(¢ cy) (0.025)" cl (3.24)
b/, 0.050

Equating the right-hand members of Eqs. (3.23) and (3.24), we obtain

0050,

(0.025)" 1 13.26 X 1079

390.6 X 107" = 211.0 X 107" = 179.6 X 10" m"
206 X 107" m = 20.6 mm
The corresponding tube thickness is
( 25 mm 20.6 mm L4 mm

A tube thickness of 5 mm should be used

1.0
0 005 0.10 015 020 025 0.30
rid
Fig. 3.32 Stress-concentration factors
for fillets in circular shafts.

The derivation of the torsion formula,

assumed a circular shaft with uniform
cross-section loaded through rigid end
plates.

The use of flange couplings, gears and
pulleys attached to shafts by keys in
keyways, and

Experimental or numerically determined
concentration factors are applied as

14
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/ HAN QF MA A
Sample Problem 3.6

SOLUTION:

+ Determine stress concentration
factor (K) according to the given
dimensions.

. « Calculate the maximum torque
oo r=14mm corresponding to the allowable
shearing stress

A stepped shaft is to rotate at 900 rpmas  « Calculate the resulting transmiss-
it transmits power, and its allowable ion power for the given angular
shearing stress is 50 MPa. For the frequency.
design shown, determine (a) the
maximum transmittance power, (b) the * Repeat the same procedure for the
power change when the fillet radius (r) is increase corner radius value.
increased to 24 mm. Consider the stress
concentration effect in each case.
/ HAN QF MA RIA

Sample Problem 3.6

Initial design

Modified design

re2amm, ~-2%_0253
d 95
3
=irﬂ=£z.ﬂ=7.708kN.m
c K 2 K

P’ = 27T = 27(15)(7.708) = 726.5kW

0
0 005 010 015 020 0.25 0.30
r/d

15
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TABLE 3.1.

Coefficients for
Bars in Torsion

a/b

(2]

C2

1.0 0.208 0.1406
1.2 0.219 0.1661
1.5 0.231 0.1958
2.0 0.246 0.229
2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
50 0.291 0.291
10.0 0312 0.312
0 0.333 0.333

Previous torsion formulas are valid for
axisymmetric or circular shafts

Planar cross-sections of noncircular
shafts and stress
and strain distribution

For uniform rectangular cross-sections,

At large values of a/b, the maximum
shear stress and angle of twist for other
open sections are the same as a
rectangular bar.

» Compute the shaft torque from the integral
of the moments due to shear stress

» Angle of twist (from Chapter 11)

shear stress varies inversely with thickness

16
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60 mm
4 mm

(a)

I 100 mm |

f

3 mm

60 mm

1 1A

/| AN OF MA RIA
Example 3.10
i l 100 mm iB Extruded aluminum tubing with a rectangular
A

cross-section has a torque loading of 2.7 kNm.
Determine the shearing stress in each of the
four walls with (a) uniform wall thickness of
4 mm and wall thicknesses of (b) 3 mm on AB
and CD and 5 mm on CD and BD.

SOLUTION:

+ Determine the shear flow through the
tubing walls.

« Find the corresponding shearing stress
with each wall thickness .

Example 3.10

SOLUTION:

tubing walls.

56 mm t=4mm

t=4mm

« Determine the shear flow through the

« Find the corresponding shearing
stress with each wall thickness.

With a uniform wall thickness,

With a variable wall thickness

716 =T =83.7MPa]

|Tac =7cp =50.2MPa|
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Sample Problem 3.9

oL SOLUTION:
b , :
& >m + Determine stress concentration
40 mm t=6mn 1 1
> factor (K) according to the given
Z dimensions.
40 mm gm

+ Calculate the maximum torque
corresponding to the allowable
shearing stress

(1

4 mm
(2)

« Calculate the resulting transmiss-

For the allowable shearing stress of 40 . .
ion power for the given angular

MPa, determine the largest torque that

may be applied to each of the given frequency.
brass bars and tube. (Note: two solid . Repeat the same procedure for the
bars have the same cross-sectional area; increase corner radius value.

the square bar and tube have the same
outside dimensions)

/ AN OF MATERIA

Sample Problem 3.9

1) Square bar TABLE 3.1. Coefficients for

ilar Bars in Torsion

a 40

Z="--10 =¢,=0.208 a/b G ce

b 40 10 | 0208 | 0.1406
12 | 0219 | 01661
15 | 0231 | 01958
20 | 0246 | 0229
25 | 0258 | 0249
30 | 0267 | 0263

‘ 2) Rectangular bar 40 | 0282 | 0281
50 | 0201 | 0291

a 64 100 | 0312 | 0312

b E 6 256 (from linear interpolation) oo | 0393 | 0353

t=6mm

3) Square tube {0 54

—stmn—|

10 mm
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