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32N

300 mm

660 mm

300 mm

« Prismatic members
(21 S) subjected to

acting in the same
longitudinal plane

+ Used in the design of
many machine and
structural components
(eg.beams and girders)

/ HAN VIA RIA
Other Loading Types inducing Bending

r—flz’_l) mmT‘

"= 600 N

‘P = 600 N

 Eccentric Loading: Axial loading which
does not pass through section centroid
produces

 Transverse Loading: Concentrated or
distributed transverse load produces

+ Principle of Superposition: The normal
stress due to pure bending may be

to find the complete state of stress.
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« Internal forces in any cross section are equivalent to
a couple. The moment of the couple is the section

 From statics, a couple M consists of two equal and
opposite forces.

+ The sum of the components of the forces in any
direction is zero.

» The moment is
and zero
about any axis contained in the plane.

» These requirements may be applied to the sums of
the components and moments of the statically
indeterminate elementary internal forces.

(a) Longitudinal, vertical section
(plane of symmetry)

V. al

M

(h) Longitudinal, horizontal section

Beam with a plane of symmetry in pure bending:

* member remains symmetric

+ bends uniformly

+ cross-sectional plane passes through arc center
and

+ length of top decreases and length of bottom
increases

must exist that is parallel to the
upper and lower surfaces and for which

* stresses and strains are
above the neutral plane and
below the neutral plane
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Consider a beam segment of length L.

After deformation, the length of the neutral
surface remains L. At other sections,

Neutral

axis

/ HAN QF MA RIA
Stress Due to Bending

a,

« For a linearly elastic material, ’4_.

ag.

SN

Neutral surface

« For static equilibrium, - - e
a « For static equilibriu

3

First moment with respect to neutral
plane is zero. Therefore,
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Stress Due to Bending

A steel bar of 20 X 60-mm rectangular cross section is subjected to two
equal and opposite couples acting in the vertical plane of symmetry of

EXAMPLE 4.01

20 mm the bar (Fig. 4.14). Determine the value of the bending moment M that
" " causes the bar to yield. Assume oy = 250 MPa.
M /
f Since the neutral axis must pass through the centroid C of the cross

60 mm % = :
section, we have ¢ = 30 mm (Fig. 4.15). On the other hand, the centroidal

moment of inertia of the rectangular cross section is

Fig. 4.14

I= ,‘lh/:" = ,‘7(2() mm)(60 mm)® = 360 X 10* mm*
Solving Eq. (4.15) for M, and substituting the above data, we have

i 360 X 1077 m*
M=-0,= -
c 0.03m

M =3kN - 'm

(250 MPa)

\/ AN OF MATERIA

Beam Section Properties

o  The maximum normal stress due to bending,
A =15 X 10° mm?

_ X<
P \\\
b 1 >

h =150 mm J ITL }7—( h = 200 mm
|

i I : \ /) . . .
E / / A beam section with a larger section modulus
b=100mm  — will have a lower maximum stress

b =75mm

« Consider a rectangular beam cross section,

Between two beams with the same cross
sectional area, the beam with the greater depth
will be more effective in resisting bending.

g7 orbeny ) Y-y « Structural steel beams are designed to have a
large section modulus.
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ooy 755
Appendix C. Properties of Rolled-Steel Shapes I T
(S| Units) d X X
S Shapes =t
(American Standard Shapes) l
)»J
by
Flange
Web Axis X-X Axis Y-Y
Thick- | Thick-
Area Depth | Width ness ness /X S, {4 I, S, ry
Designationt A,mm? d,mm | bymm t,mm | t,mm | 10°mm* 10°mm® mm {0°mm* 1 mm®  mm
S$610 X 180 22900 622 204 217 20.3 1320 4240 240 |349 341 39.0
158 20100 622 200 277 15.7 1230 3950 247 325 321 39.9
149 19000 610 184 22.1 18.9 995 3260 229 20.2 215 323
134 17100 610 181 221 15.9 938 3080 234 19.0 206 33.0
119 15200 610 178 22.1 12.7 878 2880 240 17.9 198 34.0
S510 X 143 18200 516 183 234 20.3 700 2710 196 |21.3 228 339
128 16400 516 179 234 16.8 658 2550 200 19.7 216 344
112 14200 508 162 20.2 16.1 530 2090 193 12.6 152 29.5
98.3 12500 508 159 20.2 12.8 495 1950 199 11.8 145 304
S$460 X 104 13300 457 159 17.6 18.1 385 1685 170 10.4 127 275
81.4 10400 457 152 17.6 11.7 333 1460 179 8.83 113 28.8
S380 X 74 9500 381 143 15.6 14.0 201 1060 145 6.65 90.8 26.1
64 8150 381 140 15.8 10.4 185 971 151 6.15 85.7 27.1
[ )
Vi HAN QOF MA =IA

Deformations in a Transverse Cross Section

!/|

. » Deformation due to bending moment M is

quantified by the curvature of the neutral surface

Neutral #

surface / h

 Although cross sectional planes remain planar
when subjected to bending moments, in-plane
deformations are nonzero,

Nentral axis of | 1

: 1

transverse section \
|

A

» Expansion above the neutral surface and

—_— contraction below it cause an in-plane curvature,
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SOLUTION:

- Based on the cross section geometry,
calculate the location of the section
centroid and moment of inertia.

_ A _
v =ZZ—VA Iy =z(| +Ad2)

« Apply the elastic flexural formula to
find the maximum tensile and
compressive stresses.

A hollow rectangular tube is extruded
from an aluminum alloy for which SY =
275 MPa, SU = 415 MPa, and E = 73

GPa. Neglecting the effects of fillets, P Mc
determine (a) the bending moment M for mo
which the safety factor will be 3.0, (b)
the corresponding radius of curvature of « Calculate the curvature
the tube. 1 M
p El

/ HAN QF MA RIA
Sample Problem 4.1
SOLUTION:
Moment of inertia.
== :T_ E | = 180x120° - L 68x108° = 4.382x10°mm*
bml o r|;——‘ Allowable stress (F.S. = 3.0)
oy = o = HOMPA_ 30 33 MPa

“TFS. 30
/” Bending moment (with ¢ = 60 mm)

—6 4
Mot = 4382107 M ;a0 05 \pa) ~10.1KN - m

c 0.06m
M ! .
( / | Radius of curvature
#E 1 M 10.1kN-m

1_M_ =0.0316 m*
p El (73GPa)(4.382x10° m*)

oo p=3L7m
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’<— 90 mm —»‘
_L:ZO mm

40 mm

.-

30 mm
A cast-iron machine part is acted upon by a
3 kN-m couple. Knowing E = 165 GPa and
neglecting the effects of fillets, determine
(a) the maximum tensile and compressive
stresses, (b) the radius of curvature.

\/ AN OF MA

SOLUTION:

- Based on the cross section geometry,
calculate the location of the section
centroid and moment of inertia.

« Apply the elastic flexural formula to
find the maximum tensile and
compressive stresses.

« Calculate the curvature

Sample Problem 4.2

’<— 90 mm —»‘

i

il _LZO mm
X"

i, =50 mmT N
40 mm —e Y
LA e \_
7 :
175 = 20 mm I‘—"
30 mm
_ = T mn
12mm i 2 L L“‘l ','
Cc*=] T-"
18 mm —
— e Y =38 mm
2 '

SOLUTION:

Based on the cross section geometry, calculate
the location of the section centroid and
moment of inertia.
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Sample Problem 4.2

+ Apply the elastic flexural formula to find the

12- T, =0.022m maximum tensile and compressive stresses.
L "

cp = 0.038 m

§ oa=+760MPa
og =—-131.3MPa

/— Center of curvature

» Calculate the curvature

=20.95x10"3m?

1
P
p=47.7m

U]

+ Consider a composite beam formed from
two materials with E; and E,.

yeifl}

_» Normal strain varies linearly.

» Piecewise linear normal stress variation.

Neutral axis does not pass through
section centroid of composite section.

+ « Elemental forces on the section are

» Define a transformed section such that
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Bar is made from bonded pieces of
steel (E; = 200 GPa) and brass (E,
=100 GPa). Determine the
maximum stress in the steel and
brass when a moment of 4.5 KNm
is applied.

L\ 1/
Example 4.03
18 mm SOLUTION:
10 mm —>| | “—l() mm
T  Transform the bar to an equivalent cross
section made entirely of brass
« Evaluate the cross sectional properties of
. the transformed section
« Calculate the maximum stress in the
R transformed section. This is the correct
Steel maximum stress for the brass pieces of
Brass Brass the bar.

» Determine the maximum stress in the

steel portion of the bar by multiplying
the maximum stress for the transformed
section by the ratio of the moduli of
elasticity.

mmm—»} l-~»} |"’l()m|l|

75 mm

Brass Brass

10 mm-—! |* 36 mm —-| |-— 10 mm

‘*—— 56 mm ~—-‘

1 AN QF MA RIA
Example 4.03
18 mm SOLUTION:

+ Transform the bar to an equivalent cross section
made entirely of brass.

[ st  Evaluate the transformed cross sectional properties

» Calculate the maximum stresses

(04 ) =85.7MPa
(6), =171.4MPa
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3.0 - . 3.
T “’(W)“ SRR T
MR E\\\R
2.4 I\\\\ D=3 04 \ \ \<(|.51
\\\ o NERN\
K20 \ \ 1.5 [ K 20 \\\§ 2 1.05
\ { 1.2 \\\/\
&) 1.1 18 N
IR | SRR - NS
14 \\ EEE\\\‘ 1 :4 R
1.2 \k::h 12
1.0 — 1.0
0 0.05 0.10 0.15 0.20 0.25 0.3 0 0.05 0.10 0.15 0.20 0.25 0.30
rid rid
Stress concentrations may occur:
« in the vicinity of points
* in the vicinity of
/| HAN OF MA R|A

Stress Concentrations

bending moment is equal to 180 N - m.

We note from Fig. 4.29a that

d = 60 mm — 2(10 mm) = 40 mm

3 = 20 mm b =9mm

o=
axis is
I =5bd® = {59 X 107 m)(40 X 107° m)’
=48 X 10 m*
The value of the stress Mc/I is thus
(180 N » m)(20 X 107 m)

Mc srie
= = 75 MPa

I 48 X 107" m*

Grooves 10 mm deep are to be cut in a steel bar which is 60 mm wide
and 9 mm thick (Fig. 4.29). Determine the smallest allowable width of
the grooves if the stress in the bar is not to exceed 150 MPa when the

EXAMPLE 4.04

10mmi | <

The moment of inertia of the critical cross section about its neutral ‘

d

10 mm

.py

Fig. 4.29

D = 60 mm

|

o |
b=9mm

b)
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Stress Concentrations

Substituting this value for Mc/I into Eq. (4.29) and making o, = 150 MPa,
we write

150 MPa = K(75 MPa) B < i
K=2 I
! '
7 | D = 60 mm
We have, on the other hand, ‘1 o
D 60 mm _ 10mm} |
- = {8
d 10 mm op b o e
- b=9mm
Using the curve of Fig. 4.28 corresponding to D/d = 1.5, we find that
the value K = 2 corresponds to a value of r/d equal to 0.13. We have,
therefore,
3.0
r a 28 \
- =0.13 - \
d 26
WL
r=0.13d = 0.13(40 mm) = 5.2 mm 29
o o . 2.0
The smallest allowable width of the grooves is thus K
18 =~ L
2r = 2(5.2 mm) = 10.4 mm 16 I
[ —————
14 ——
12
I““ 0.05 0.10 0.15 0.20 0.25 0.30
r/d

« Stress due to eccentric loading found by
superposing the uniform stress due to a centric
load and linear stress distribution due a pure
bending moment

* Bccentric loading « Validity requires stresses below proportional

limit, deformations have negligible effect on
geometry, and stresses not evaluated near points
of load application.

Y f/‘ Yy

12
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Example 4.07

700 N

~= 12 mm

16 mm

700 N

*An open-link chain is obtained by

bending low-carbon steel rods into the
shape shown. For 700 N load, determine °

(a) maximum tensile and compressive
stresses, (b) distance between section
centroid and neutral axis

SOLUTION:

Find the equivalent centric load and
bending moment

Superpose the uniform stress due to
the centric load and the linear stress
due to the bending moment.

Evaluate the maximum tensile and
compressive stresses at the inner
and outer edges, respectively, of the
superposed stress distribution.

Find the neutral axis by determining
the location where the normal stress
is zero.

1 AN QF MA RIA
Example 4.07
O
[@=T6mm~ ,p ) + Normal stress due to a
AN 83 M centric load
M Lo <
/

H

I
i
[
[
i
i

700 N

+ Equivalent centric load |66 MPa
and bending moment

» Normal stress due to
bending moment

—66 MPa

13
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¥ 66 MPa

6.2 MPa

stresses
o, =72.2MPa
o, =—-59.8MPa|
/ HAN QOF MA

* Maximum tensile and compressive

-59.8 MPa
66 MPa

» Neutral axis location

Sample Problem 4.8

)L 40 Tnm
y 10mm~ ¢
1 B
30 mm
Section a—a
*From Sample Problem 4.2,
A=3x10"3m?
Y =0.038m
| =868x107° m*

*The largest allowable stresses for the cast
iron link are 30 MPa in tension and 120
MPa in compression. Determine the largest
force P which can be applied to the link.

* SOLUTION:

+ Determine equivalent centric load and
bending moment.

 Superpose the stress due to a centric
load and the stress due to bending.

« Evaluate the critical loads for the allowable
tensile and compressive stresses.

 The largest allowable load is the smallest
of the two critical loads.

14
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Sample Problem 4.8

20 mm

40 mm

1

90 m1 . . . .
o « Determine equivalent centric and bending loads.

30 mm + Superpose stresses due to centric and bending loads

Section a—a

T 7 3
1 cy =0.022m

F X
(L 4 } ¢ =0.038m

—1D ‘

M,  Evaluate critical loads for allowable stresses.

 The largest allowable load P=77.0 kN

Analysis of pure bending has been limited
to members subjected to bending couples
acting in a plane of symmetry.

Members remain symmetric and bend in
the plane of symmetry.

The neutral axis of the cross section
coincides with the axis of the couple.

Will now consider situations in which the
bending couples do not act in a plane of
symmetry.

Cannot assume that the member will bend
in the plane of the couples.

In general, the neutral axis of the section will
not coincide with the axis of the couple.
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neutral axis passes through centroid

Wish to determine the conditions under  *
which the neutral axis of a cross section
of arbitrary shape coincides with the

axis of the couple as shown. defines stress distribution

« The resultant force and moment
from the distribution of .
elementary forces in the section
must satisfy

couple vector must be directed along
a principal centroidal axis

\/

Unsymmetric Bending

Superposition is applied to determine stresses in
the most general case of unsymmetric bending.

« Resolve the couple vector into components along
the principle centroidal axes.

* Superpose the component stress distributions

« Along the neutral axis,

16
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Example 4.08
7T SOLUTION:
P \{;, 2 * Resolve the couple vector into
components along the principle
¢ | 90mm centroidal axes and calculate the

corresponding maximum stresses.

« Combine the stresses from the
component stress distributions.

40 mm

A 180 Nm couple is applied to a
rectangular wooden beam in a plane
forming an angle of 30 deg. with the

« Determine the angle of the neutral

. . . axis.
vertical. Determine (a) the maximum
stress in the beam, (b) the angle that the
neutral axis forms with the horizontal
plane.
/ HAN QOF MA RIA
Example 4.08
* Resolve the couple vector into components and calculate
¥ the corresponding maximum stresses.
D E M, = (180 Nm)cos30 =155.9Nm
180N m_ |2 M, =(180Nm)sin30 =90 Nm
|
~ "
i 4* T I, =2(0.04m)0.09m)’ = 2.43x10° m*
Y G T I, =2(0.09m)0.04m)’ =0.48x10° m*
o= 30° 45mm  The largest tensile stress due to M, occurs along AB
A ‘ B
20 mm The largest tensile stress due to M, occursalong AD

» The largest tensile stress due to the combined loading

occurs at A.
O =6.64MPa



4_2_pure_bending.ppt
4_2_pure_bending.ppt
4_2_pure_bending.ppt
4_2_pure_bending.ppt
4_2_pure_bending.ppt
4_2_pure_bending.ppt

\7 ’  Determine the angle of the neutral axis.

$=71°

R R
AUV UV
AREEEEERSHRRRR SRR Y

« Consider a straight member subject to equal
and opposite eccentric forces.

 The eccentric force is equivalent to the system
of a centric force and two couples.

« By the principle of superposition, the
!/‘ combined stress distribution is

« If the neutral axis lies on the section, it may
be found from

18
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. | 4.
gular cross section, 80 by 120 mm (Fig. 4.65). (¢) Determine the stress
at points A, B, C, and D. (b) Locate the neutral axis of the cross
. .50 kN
section.
35 mm v

(a) Stresses. The given eccentric load is replaced by an equiva-
lent system consisting of a centric load P and two u»n[wlm M, and M.
represented by vectors directed along the principal centroidal axes of the
section (Fig. 4.66). We have
M, = (480 kN)(40 mm) = 192N * m
M. = (480 kN)(60 mm — 35 mm) = 120N + m

We also compute the area and the centroidal moments of inertia of the
cross section: "/|
< s P = 450kN
A = (0.080 m)(0.120 m) = 9.60 X 10 " m~ .
I, = $5(0.120 m)(0.080 m)* = 5.12 X 10™° m* %

L. = 5(0.080 m)(0.120 m)’ = 11.52 X 10 ° m*

The stress o, due to the centric load P is negative and uniform across

the section. We have

P —4.80 kN -,
= — — = —0.5 MPa
A 9.60 X 10" m"~

\/ AN OF MATERIA

General Case of Eccentric Axial Loading

The stresses due to the bending couples M, and M. are linearly distrib

uted across the section, with maximum values equal, respectively, to 1.625 MPa 3
'-~ S0 mm —

: 92N - 0
g Mz _ (192N - m)(4 “"'“> — 1.5 MPa 0.375 MPa

I, 512 %X 107 m* B__G ¢ AH A

M.y, (120N + m)(60 mm) B
oy = . = 0,625 MPa
—1.375 MPa

I 11.52 X 10 % m
!-—sm..m

The stresses at the corners of the section are
2.625 MPa

o, =0y 0 * oy
where the signs must be determined from Fig. 4.66. Noting that the c
stresses due to M, are positive at C and D, and negative at A and B, and \H Nong
that the stresses due to M. are positive at B and C, and negative at A and L ay;
D, we obtain Cf — %
= 5 2 625 r“

oy=—-05-15 5 MPa | 5

oy = —05— 1.5+ 0.625 = —1.375 MPa

o 0.5 + 1.5 + 0.625 +1.625 MPa

op=—05+ 1.5 - 0.625 = +0.375 MPa +0.375 MPa +1.625 MPa

(b) Neutral Axis. We note that the stress will be zero at a point
G between B and C, and at a point H between D and A (Fig. 4.67). Since

the stress distribution is linear, we write

BG 1.375 ) B
= - — BG = 36.7 mm
S50 mm 1.625 + 1.375
HA 2.625 -
— HA = 70 mm
S0 mm 2,625 + 0.375

19
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